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Figure 3: (a) Distributions of top-30 basis weights from audio and 
visual modalities of word ”about”. (b) 2D visualization via PCA of 

basis vectors for words with similar/dissimilar pronunciations.

● In Figure 3 (a), we see that the derived basis 
weights of audio/visual modality share 
similar distributions.

 
● In Figure 3 (b), we see that words with 

similar pronunciation tend to select similar 
basis vectors.
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Figure 1: Illustration of joint audio-visual speech recogntion and manipulation.

● Audio-visual speech synthesis is an extension of audio-visual speech 
recognition, aiming at generating realistic talking face video or audio 
outputs based on the desirable identity and linguistic information.

● We present a unified framework for jointly addressing the above 
six different intra/cross-modality synthesis and recognition tasks.
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Figure 2: Our proposed framework for audio-visual speech recognition and manipulation

● To relate visual and audio data, we mutually 
align the basis weight and the word prediction 
distribution across visual and audio modalities.
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Figure 4: Example of intra/cross-modality synthesis: (a) face-to-voice & face-to-face synthesis, and  (b) voice-to-face and voice-to-voice synthesis.

Table 1: Quantitative evaluation of talking face generation. Table 3: Quantitative evaluation of speech recognition.

Table 4: Ablation studies of our model design on speech recognition.

● Each module in cross-modal mutual 
learning benefits ASR and VSR

Table 2: Quantitative evaluation of voice generation.

● Human voice of better quality

● Talking face video of satisfactory quality 
and much higher lip sync accuracy (LSA.)

● Accurately recognize audio/visual 
speech content

Contribution

● To transfer linguistic knowledge across modalities, we advance 
cross-modal mutual learning which aligns cross-modality data, 
producing modality-agnostic linguistic representation for AVSR.

● Our framework allows manipulation of visual and/or audio speech 
data, conditioned on the desirable linguistic or subject identity 
information of the inputs from the same or distinct modalities.

● We present a unified framework for joint audio-visual speech 
recognition and synthesis.


