

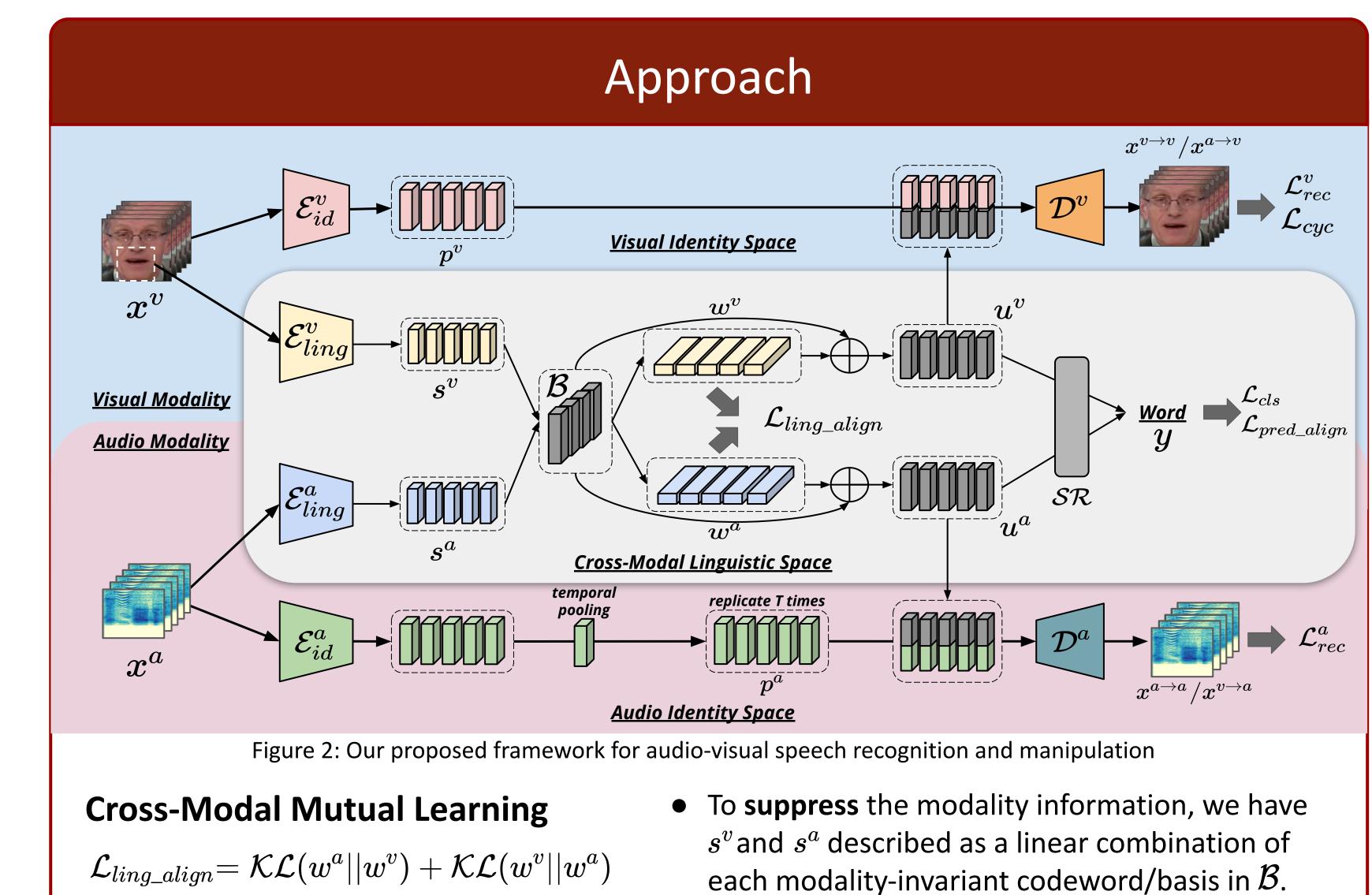
- Audio-visual speech synthesis is an extension of audio-visual speech recognition, aiming at generating realistic talking face video or audio outputs based on the desirable identity and linguistic information.
- We present a unified framework for jointly addressing the above six different intra/cross-modality synthesis and recognition tasks.

Contribution

- We present a unified framework for joint audio-visual speech recognition and synthesis.
- To transfer linguistic knowledge across modalities, we advance cross-modal mutual learning which aligns cross-modality data, producing modality-agnostic linguistic representation for AVSR.
- Our framework allows manipulation of visual and/or audio speech data, conditioned on the desirable linguistic or subject identity information of the inputs from the same or distinct modalities.

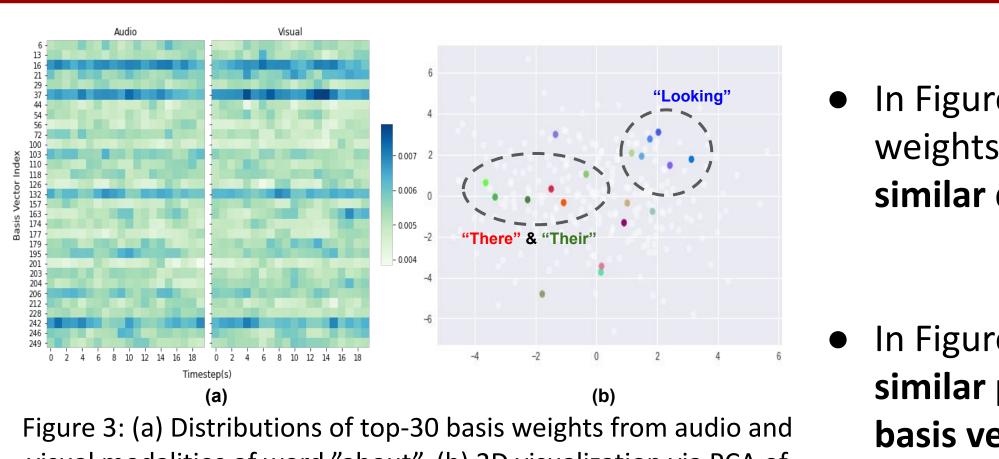
Cross-Modal Mutual Learning for Audio-Visual Speech Recognition and Manipulation

Chih-Chun Yang Wan-Cyuan Fan Cheng-Fu Yang Yu-Chiang Frank Wang National Taiwan University & ASUS Intelligent Cloud Services, Taiwan



 $\mathcal{L}_{pred_align} = \mathcal{KL}(d^a || d^v) + \mathcal{KL}(d^v || d^a)$ $\mathcal{L}_{mml} = \mathcal{L}_{cls} + \lambda_l \mathcal{L}_{ling_align} + \lambda_p \mathcal{L}_{pred_align}$

Analysis on the Modality-Invariant Codebook



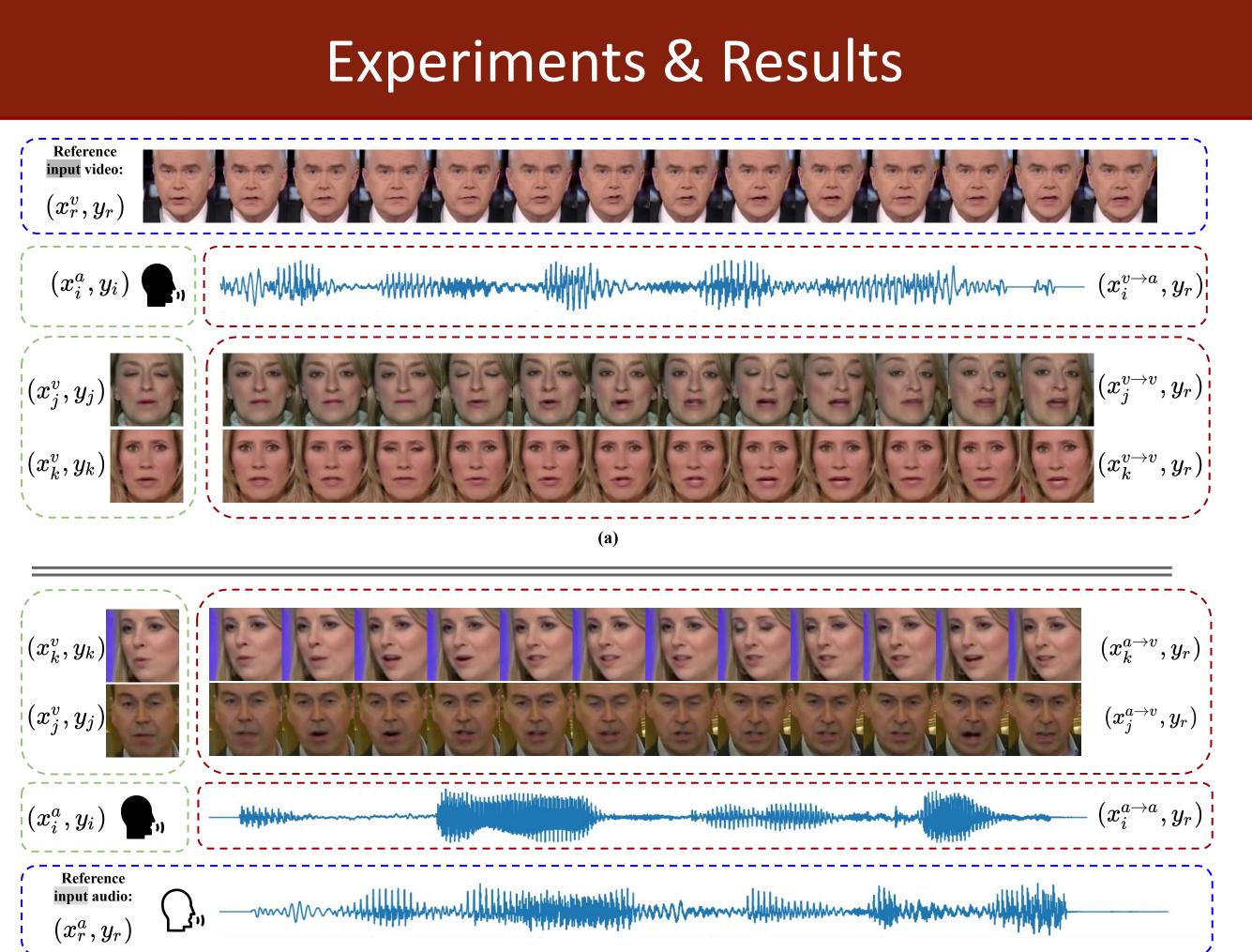
visual modalities of word "about". (b) 2D visualization via PCA of basis vectors for words with similar/dissimilar pronunciations.

- basis vectors.

• To **relate** visual and audio data, we **mutually** align the basis weight and the word prediction distribution across visual and audio modalities.

• In Figure 3 (a), we see that the derived basis weights of audio/visual modality share similar distributions.

• In Figure 3 (b), we see that words with similar pronunciation tend to select similar



Method	Task	PSNR	SSIN
DAVS	Intra	26.8	0.88
Ours	mua	33.4	0.96
DAVS		26.7	0.88
ATVGNet		30.9	0.81
LipGAN	Cross	33.4	0.96
Wav2Lip		31.2	0.93
Ours		32.46	0.95

Table 1: Quantitative evaluation of talking face generation.

• Talking face video of satisfactory quality and much higher lip sync accuracy (LSA.)

Method	Task	STOI	ESTOI	PESQ
VQ-VAE	Intro	0.852	0.720	1.943
Ours	Intra	0.866	0.746	2.248
Lip2Wav	Cross	0.543	0.344	1.197
Ours	C1088	0.571	0.363	1.540
Table 2: Quantitative evaluation of voice generation				

Table 2: Quantitative evaluation of voice generation

• Human voice of **better quality**

Figure 4: Example of intra/cross-modality synthesis: (a) face-to-voice & face-to-face synthesis, and (b) voice-to-face and voice-to-voice synthesis

			LRW		LRW-1000
LSA.	Methods	Rec. Backbone	Visual	Audio	Visual
12.2	DAVS	None	67.5	91.8	_
22.1	Bi-LSTM	LSTM	84.3	-	_
10.7	MSTCN	ResNet	85.3	98.5	41.4
	DSTCN	SEDenseNet	<u>88.4</u>	-	43.7
12.3	Bi-GRU	GRU	85.0	-	48.0
11.3	(Ren et al. 2021)	Transformer	85.7	-	-
<u>23.2</u>	Ours w/o syn.	ResNet	88.4	98.5	50.5
27.7	Ours	ResNet	88.5	98.4	50.3
eneration.	Table 3: Quar	titative evaluation	of spee	ch recog	gnition.

• Accurately recognize audio/visual speech content

Experiment Setting			LRW-1000	
	Visual	Audio	Visual	Audio
Baseline	87.85	98.45	49.24	84.34
Ours $(+ B)$	88.14	98.46	49.51	84.84
Ours (+ \mathcal{B} + L_{align})	88.45	98.48	50.46	84.97
Ours $(+\mathcal{B} + L_{align} + L_{rec})$	88.47	98.40	50.32	84.84

Table 4: Ablation studies of our model design on speech recognition

• Each module in cross-modal mutual learning benefits ASR and VSR